Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus.

نویسندگان

  • P F Chan
  • S J Foster
چکیده

The staphylococcal accessory regulator (encoded by sarA) is an important global regulator of virulence factor biosynthesis in Staphylococcus aureus. To further characterize its role in virulence determinant production, an sarA knockout mutant was created by insertion of a kanamycin antibiotic resistance cassette into the sarA gene. N-terminal sequencing of exoproteins down-regulated by sarA identified several putative proteases, including a V8 serine protease and a novel metalloprotease, as the major extracellular proteins repressed by sarA. In kinetic studies, the sarA mutation delays the onset of alpha-hemolysin (encoded by hla) expression and reduces levels of hla to approximately 40% of the parent strain level. Furthermore, SarA plays a role in signal transduction in response to microaerobic growth since levels of hla were much lower in a microaerobic environment than after aerobic growth in the sarA mutant. An exoprotein exhibiting hemolysin activity on sheep blood, and up-regulated by sarA independently of the accessory gene regulator (encoded by agr), was specifically induced microaerobically. Transcriptional gene fusion and Western analysis revealed that sarA up-regulates both toxic shock syndrome toxin 1 gene (tst) expression and staphylococcal enterotoxin B production, respectively. This study demonstrates the role of sarA as a signal transduction regulatory component in response to aeration stimuli and suggests that sarA functions as a major repressor of protease activity. The possible role of proteases as regulators of virulence determinant stability is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Staphylococcus aureus alternative sigma factor sigmaB controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model.

The role of sigmaB, an alternative sigma factor of Staphylococcus aureus, has been characterized in response to environmental stress, starvation-survival and recovery, and pathogenicity. sigmaB was mainly expressed during the stationary phase of growth and was repressed by 1 M sodium chloride. A sigB insertionally inactivated mutant was created. In stress resistance studies, sigmaB was shown to...

متن کامل

Diminished virulence of an alpha-toxin mutant of Staphylococcus aureus in experimental brain abscesses.

Staphylococcus aureus is one of the major etiologic agents of brain abscesses in humans, occasionally leading to focal neurological deficits and even death. The objective of the present study was to identify key virulence determinants contributing to the pathogenesis of S. aureus in the brain using a murine brain abscess model. The importance of virulence factor production in disease developmen...

متن کامل

Effects of Sub-Minimum Inhibitory Concentrations of Silver Nanoparticles on Some Virulence Factors of Staphylococcus aureus

ABSTRACT          Background and Objectives: Silver nanoparticles (AgNPs) have physical and surface properties that could threaten human and environmental health. AgNPs are classified as ‘very toxic’ to eukaryotic organisms and are less toxic to bacteria. The aim of the present study was to study the effects of different sub-minimum inhi...

متن کامل

Regulation of virulence gene expression in Staphylococcus aureus

The pathogenic bacterium Staphylococcus aureus has the ability to cause a wide variety of human diseases, ranging from superficial abscesses and wound infections to deep and systemic infections such as osteomyelitis, endocarditis and septicaemia. The ability to cause disease has been attributed to a large number of toxins and digesting enzymes as well as to proteins at the bacterial surface tha...

متن کامل

RpiRc Is a Pleiotropic Effector of Virulence Determinant Synthesis and Attenuates Pathogenicity in Staphylococcus aureus.

In Staphylococcus aureus, metabolism is intimately linked with virulence determinant biosynthesis, and several metabolite-responsive regulators have been reported to mediate this linkage. S. aureus possesses at least three members of the RpiR family of transcriptional regulators. Of the three RpiR homologs, RpiRc is a potential regulator of the pentose phosphate pathway, which also regulates RN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 180 23  شماره 

صفحات  -

تاریخ انتشار 1998